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T H E  P R O P A G A T I O N  O F  O S C I L L A T I O N S  F R O M  
A P O I N T  S O U R C E  I N  A N  A N I S O T R O P I C  P L A N E  A N D  

H A L F - P L A N E  W I T H  A T H I N  C O A T I N G t  

K. Sh.  M K R T C H Y A N  

Leninakan 

(Sece/vea 23 ~ r a  1991) 

Two dynamical problems of the propagation of oscillations in an anisotropie medium generated by a point harmonic force are 
considered. In the first problem steady harmonic oscillations in an anisotropie plane are investigated. The solution can be reduced 
to solving a system of seoDnd-order elliptic equations for the steady part of the displacements. As the second problem, within 
the fl'amework of the basic physical model [1], the dynamical contact problem for an anisotropie half-plane reinforced along its 
boundary by an infinite elastic coating in the form of a thin cover is considered. The generating point force is harmonic. The 
solution of each of the two problems is constructed by the method of Fourier tranfforms. Using Lighthill's method [2] and the 
method of stationary phase [3], asymptotic formulae are obtained for the strains and stresses, in which surface, quasilongitudinal 
and quasitransverse wave~; can be distinguished explicitly. © 1996 Elsevier Science Ltd. All rights reserved. 

Contact problems of the perturbation of an eleetroelastic half-plane by a single electrode were considered 
previously in [4, 5], as was the dynamical contact problem for an isotropic elastic half-plane reinforced 
by an infinite or semi-infinite thin cover [1]. 

1. T H E  P R O P A G A T I O N  O F  O S C I L L A T I O N S  F R O M  A P O I N T  
S O U R C E  I N  A N  A N I S O T R O P I C  P L A N E  

S u p p o s e  t h a t  a p o i n t  h a r m o n i c  force  ~(x)5(z)e/°~ d i r ec t ed  a long  the  z axis acts  a t  t he  o r ig in  x = O, 
z = 0 o f  a sys tem o f  ¢xmrdinates  in  a n  u n b o u n d e d  elast ic an i so t rop ic  m e d i u m .  W e  shal l  cons ide r  so lu t ions  
o f  t he  f o r m  

u(n}(x ,z , t )=u,(x ,z)e  -i°~. to>0 

Here and henceforth n = 1, 3. The functions un(x, z) must satisfy the system of  equations 

192ul ~)2u 3 ~)2u I ,, 
c I a--S]-A +c2  ~---~-~- + c ~ - ~ - 3 - + p o ' u  I = 0 

o x  o x  oZ  " o Z "  

~2U 3 ~2U I- ~2U 3 
c3 ~ + c2 ~ + c4 ~ + po-'.3 + ~¢~)~(z) = 0 

(1.1) 

It is assumed that the coefficients Ca . . . .  , c4 are expressed in terms of the elasticity constants of 
the medium and satislbj the conditions of strong hyperbolicity and positive definiteness of elastic energy 
[61 

-2(Ot~) ~ < ~/< I + Ot~3 

a = c...A, ~ = c__L, 7=1+a13_ c.___~.; 
q c4 (clc4) 

(1.2) 

We consider the ease 

0 < a < l ,  0 < ~ < 1  (1.3) 
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By the Fourier transform method with respect to x, we shall construct a solution of (1.1) representing 
an outgoing wave as x 2 + z 2 ---> oo. We obtain the following expressions for the displacements 

2 
u l ( x , z ) =  signz y~ (_l),,, it~czv , , ( o )d t  ~ 

2;t -~ m=l 

u3(x,z) = ~ -....=~ 

(1.4) 

where 

U m ((I) = [2C3C 4(TI - T 2 ) ] e x p l - i ( t ~ x -  iT.,(o)] z i)] 

"Z(C~) + ( - I ) ' + J  ( U ( o ) )  ~ ]½ 
T~ (or) 

2ix J 
Z(t~) = t;2T - k22ct(I + ~), U(tS) = Z 2 (t$) - 4tx~l(o 2 - k 2 )(o 2 - k22 ), 

kl 2=pt .02let ,  k~=pto  2 / c  3 

Here and henceforth m = 1, 2. 
We will begin by studying the functions Tm(~). We note that ±kin+2 are branching points of order 

two of the inner radical in the expressions for Tm(t~) and 

, _ ~ ( I )  ''+l T ~ +-kin+ 2 = + 0 t ~ k 2 M !  ~-[M 2 + - - ] ~  

M I = T  2 - 4 0 t ~ ,  M 2 = T ( l + ~ ) - 2 [ ~ ( l + o t )  

M 3 =(1 _~)2, T =  M 2 - M~M~ = 4ac~c~2[(tx+l~)-T] 

If Z ( ± k l )  < 0 and Z(---k2) > 0, then ±kl ,  ±k2 will correspondingly be the branching points of order 
two of the outer radical in the expressions for Tm(O)- 

The following expansions are therefore valid 

Tm (c~) = a + (o + k,,, )~ + .... 

(-ff  - k m )~ = - i ( o  + k,. )~ 

Z(k. , )  = k~,T - k~a(]  + ~) 

( t~ - k,,, ) ~  = - i (  k,,, - t~ ) ~ 

. . . . .  ~_ , )l  ~ a,, = [(-I) 2k,,,~(k 2 - k? ) I Z(k,,, 

÷ = -ia~,, a m 

It follows from (1.2) and (1.3) that these expansions hold only when T lies in the range (a(1 + 13), 
1 + al~), where a(1 + I~) can be determined from the equation Z (k2 )  = 0. If T = a(1 + 13), then 
±k2 = ---k4 will be fourth-order branching points for Tm(O) and ±kl  will still be second-order branching 
points for Tl(6). Thus 

Tm(t~) = bl~(t~__, k2) ~ + ... .  ((~ - k2) ~ = e-ilt/4(/c2 _ ( ~ ) ~  

(--(~ - k 2 )1//4 = e -ilt14 ( k  2 + (5)~,  b 2 = e - i X l 4 b ~  

b~- = eiX/4b~, bt + = ot¼t4k2~(k22 -k~) l  ~ 

Since Z(k2) = 0 for T = a(1 + [~), it follows that Z(k2)  < 0 and  Z ( k l )  < 0 when -2(a[~) 1/2 < T < 
a(1 + ~). This means that T2((~) has no branching points and ---kl = ±k2 will be second-order branching 
points for TI(~)- Consequently 

T l ( a ) = d + ( G 4 " k m ) ) ~  + .... d,~ = - i d ~  

d;, = [2k.[}(k~ - k~) / (Z(k.,))IY~ 
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If  the branching points of  r , , (o) are known for various values of r, asymptotic expressions for 
I x I ---> 00 can be obtained by Lighthill's method.  We have 

when ct(1 + [I) < r < 1 + t ~  

ut3)(x,O,t) = Al(a2 )E2 A3E2 +ialEI ~-0(1 xl -~) 
n ~ l x l ~  2 ~ 1  xl  ~ 

for -2(¢t1~) Y2 < r < ct(l + I~) 

A31 u(3)(x'O't)= ~ t x~ ~ E2 + 2 - - ~ x ~  +o([ x[ (1.5) 

when r = ¢t(1 + I~) 

(k 2 - k~ )'/2 r(¼)F iB~ (a?)E I I-7/4) 
u(3)(x,O,t)= °tk2~(b? +b2 )l x l  ¼ + ... + 2 x g l  xl g +o(I x 

Here 

E m = exp[ - i ( to t -  kml x l - n / 4)] 

F=exp[-i(tot-k2l x l -3 / t /  4)], u(I)(x,O,t)-O 

Bz (~,) = k[c3 ~2 - 2klq (clc4)~ ] 
4k, qc3Ck~ - k? ) 

A I (k) = k(ctc4 )½ 
4c3k 2 

A3 lim 2(o_k2)~ d [ d ] = (o -  k~)~ri~(o,O) ~--,k~ ~oo (o-~2)~ ~ _ . 

It is also of  interest to obtain asymptotic formulae when z # 0. In this case it can be assumed without 
loss of  generality that  x > 0 and z > 0. 

Le t  us investigate the critical points of  the functions 

~'m (Otto) = ~m COS 0 -- iT m (tX,,,) sin 0 

i.e. the zeros of  the functions ~(/m ) (i = 1, 2 . . . .  ), where ~.(/m ) are ith order  derivatives of the function 
7bn(t~), which must  satisfy the equation 

tgO=(idr m/(d~,n)) -I, a m =on, +ix,,, (1.6) 

( i dr .  __ ( _ , .  - )l ] 
dot,,, t( U ( tx ,, ) )~ r ,,, ) 

for every 0. 
Hence it follows that  the equations under  consideration will have solutions only if idTm/(dam) are 

real. 
We consider the following cases depending on the values of  r. 
1. r .  < r < 1 + t~13. In this case the wave fronts have four lacunae, which lie between the coordinate 

axes (x, z) [7]. The quanti ty r .  is a root of  the equation 
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[3(! - [~)P - (1 + 1])'/- 2[$(I + (z)][(I - I~)P + Q]~ + 2[(I + I3)P- (l - 1])~/112(1 - [])P])~ = 0 

p = (~2 _ 4oc~)~, Q = 21~(1 - or) - y(I - 1~) 

It can be shown that ~)(ct2) = 0 when if2 = o~0 and ct2 = ~t~0, where a~0 and o~0 can be determined 
from the condition ¢2(ct2) = 0. To each value of 0 from the interval (0., 0..) there correspond three 
zeros O~2o (k = 1, 2, 3) of 7~20(o~2), which can be determined from (1.6). The end-points of the interval 
are given by arctg (/dT2/dff2) q with 0.2 = ~ 0  for 0. and with if2 = ~ for 0... To each of the remaining 
values of 0 in the interval (0, ~/2) there corresponds one zero of ~.O)(Otm). 

2. ~/= 7*. The lacunae become a point. Consequently, or2 = c ~  --- (z~0 = o~0 will be a zero of L~)(o~2). 
It can be shown that k(24)(Og2o ") # 0. The quantity o ~  can be determined from the condition ¢2(ot2). The 
critical points of 7m(tx,,,) for the remaining values of k from the interval (-2(Ez[~) ~t2, 7") can be studied 
in a similar way. 

If the critical points of the functions 7,,,(o~) are known, asymptotic expressions for u(~)(r, O, t) can 
be obtained by the method of stationary phase using (1.4) and polar coordinates. 

In case 1 we find 
f o r O <  0 < O, and O, < 0 < n/2 

utn)(r,O,.t) = B~(1) (Oqo) + B(2)(o~2o)+o(r-3/2) 

f o r 0 =  O. 

u(n)(r,O.t)= O) (2) , , k(22)(0~0)1]-~ +o(r-~) B~ (Oqo)+A" (ot20)F3(ot20)[r[ 

fo r0 .  < O < 0.. 

and 0 = 0 . .  

3 (z) (k) -3/. 
u(n)(r,O, t) = B~")(°qo) + E B, (O~2o)+o(r ) 

k=l 

u(n)(r,O,t) = B(t)(Ctto)+ "~.A(2)"~"~'~2o,'3 ~,~2o)[r I , u  "*"  "~1~(2)( t~2o)llt'-~ +o(r-~)  

(1.7) 

In case 2 the lacunae becomes a point and 
fo r0  < 0 # 0 .  < n / 2  

u(n)(r,O,t) = unn°)t",'~lo )+ B(n2)(CZ2o)+°( r-'~ ) 

and for 0 = 0. 

u ( n ) ( r , O , t ) =  (t) (2) . . . . . .  (4) , , , - ¼  B~ (a l0 )+A n (~20)F4(o~20)[r~ 2 (0~20)] +o(r-~)  

Here 

F m (O[mO) ~-~ exp[-i(~a~t + ~'m (Ot,,,o)r + ~ ~ sign ~.(~) (0~., 0 ))] 

F3(a[o) = r ( l  + ~ )3~2  ~ exp[-i(~t+L2(og20)r)] 

F 4 ( ~ ' )  = r ( I  + ~ ) 2 ~ 3  ¼ exp[-i(c~t + k2 (~[~')r + ~ ~ sign ~,~4)(o~'~)] 

~., (tz,,,) = a,,, cos 0 - i7,. (am ) sin 0 

Ctm = ff  m + ix,, ,  

A~m)(~.) = (-1)" ic2~Fs(~.) 

A~m)(~,). = (_l)m [cl~2 _ c3k~ _ c3~l re(z) (~.)]. ~,::.(~,) Es (;~). 

Ff  ~ (~.) = 2(2~) I/2 c3c4[y~ (~,) - y~ (7.)] 

B(nm)(x) = A(.n')(X)Fm(~.)[rX(2)(~.)]'~ 
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The series obtained above enables us to determine the amplitudes of quasilongitudinal and quasi- 
transverse waves in a region far from the source. The first term in each of the series (1.5) and (1.7) 
represents quasilongitudinal waves, the second term representing quasitransverse ones. Note that the 
quasitransverse waves corresponding to cusp points on the wave front decay as r -v3, i.e. slower than 
the waves related to ordinary points. When the lacunae become points, the quasitransverse waves decay 
as / . -1 /4 .  

2. THE PROPAGATION OF OSCILLATIONS FROM A POINT SOURCE 
IN AN A N I S O T R O P I C  H A L F - P L A N E  WITH A THIN COATING 

We shall solve art auxiliary problem of the steady oscillations of an anisotropic haft-plane. 
Suppose that a horizontal unit harmonic force 5(x)e -/°~ with frequency to concentrated at the origin 

of the system of coordinates acts on the boundary of an anisotropic half-plate. 
The steady parts of the displacements satisfy the homogeneous system of equations (1.1) with boundary 

conditions 

(Ou, +o,.,) 
( c 2 - c 3 ) - ~ x + C 4 - - ~ - z = O ,  ¢3t--~- z - ~ - - x j = - 8 ( x ) ( z = 0 )  (2.1) 

By the Fourier transform method with respect tox, we shall construct a solution of the homogeneous 
equations (1.1) with boundary conditions (2.1), representing an outgoing wave asx 2 + z 2 ~ .o. For the 
displacements we obtain 

e - i tt)t 

n 

W I (01 = C 4 ( 0 2  -- k 2 ) I/2 (~t I - ~/'2 ), 1~(0) = e - i a t  / R ( O )  (2.2) 

w 3 ( 0 )  = io{[c Ic 4 ( 0  2 - k~ )]~ - (c 2 - c 3 )(0 2 - k~ )~ } 

R ( O )  := {02  [¢1 c `  - ( c  2 - c 3 )2 ] _ c1¢4k?  } ( 0 2  _ k 2 )1~. _ c 3 k 2  [CLC4 ( 0 2  _ k ?  )] 1/2 

Suppose the anisotropic half-plane is reinforced by an elastic coating taking the form of a fairly thin 
cover of constant th:ickness h (see Fig. 1). 

The problem consists of finding the distribution of contact stresses along the interface between the 
coating and the half-plane, given that a horizontal harmonic forcep6(x)sin ( ~ )  acts on the upper face 
of the coating. To simplify the computations, we henceforth take a force of the form p S ( x ) e  : iu.  The 
imaginary part of the solution taken with the opposite sign will obviously be the desired solution. 

The following assurnptions are made regarding the coating. 
The thickness of the coating is many times less than the wavelength of the wave propagating in it. 

As in [1], we shall assume that because h is small, the flexural stiffness of the coating is negligibly small, 
so that the normal pressure of the coating on the half-plane can be neglected. In other words, we shall 
assume-that only the shear contact stress acts under the coating, i.e. the system is in a state of tmiaxial 
stress. 

~ \ \ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ N "  I 

#sin tat 
Fig. 1. 

.Z" 
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In  this case the s teady oscillations of  the coat ing can be  described by the equat ion [1] 

d2u. / dr 2 + p~u. = (Eih)-~[x.(x)- p8(x) l  

p? = , o  / c c = e l  / 

(2.3) 

where  c is the velocity of  p ropaga t ion  of  waves in the coating, x.(x) is the s teady par t  o f  the  unknown 
shear  contact  stresses, E1 and Pl  being, respectively, the  modulus  of  elasticity and the density of  the  
mater ia l  o f  the coating. 

O n  the o ther  hand,  the ampl i tude  ul(x) of  hor izontal  d isplacements  of  the points  on  the  bounda ry  
o f  the anisotropic  half-plane as a funct ion of  the  stress ampl i tudes  x.(x) appl ied to the boundary  of  the 
anisotropic half-plane is, by (2.2) and  the  superposi t ion  principle,  given by the formula  

u l ( x ) = T g ( l x - s l ) x * ( s ) d s  ( - * * < x < . * )  

i ~ W K(x) = ~ J .  I ( (~)K(a)dcr 

Note  that  the condi t ion 

u.(x)=ul(x) (-** < x <**) 

must  be  satisfied along the  interface be tween  the  coat ing and the half-plane.  Combined  with (2.3), this 
condit ion reduces  the p r o b l e m  of  de termining  the contac t  stress ampl i tude  to solving the integro-  
differential  equa t ion  

(--~2 + p~) ~ g(lx-sl)x.(s)ds=k*x.(x)-~.*pS(x). ~.*=(c4E, h)-' (2.4) 

The  solution of  the contact  p rob lem of  steady oscillations of  an anisotropic elastic half-plane reinforced 
along its boundary  by an infinite thin elastic coat ing can therefore  be  reduced to the integro-differential  
equat ion  (2.4). 

Applying the Fourier transform to both sides of (2.4) and using a well-known property of convolution, we obtain 

~.(o)  = ~,*pR(6)g(6)] -1 

Here 

f ( 6 )  = (6  2 - P / ) (  °2  - k2 )(YI + Y2 )+  ~,.* R(O) (2.5) 

Let us investigate the roots off(o)  for various values of T- 
At any point o on the real axis the functions Tm(O) can take real, pure imaginary, or complex values depending 

on T. 
If T < 2 (tz~) v2 and T > 0~(1 + ~i), then 71(6) is pure imaginary when 1 6 1 < k2 and real when [ 6 [ > k 2. The 

function T2(6) is pure imaginary when [ 6 [ < k2 and real when 1 6 [ > k2, i.e. %(6)  take only real or pure imaginary 
values. 

If T < 2 (tz[~) v2 and T > tx(1 + ~i), then 71(6) is pure imaginary when [ 6 [ < kl, real when k 1 < [ 6 ] < 6., and 
complex when [ 6 1 > 6.. From the continuity of the real part of yl(O) for [ 6 [ = 6. it follows that Im Tl(6) = 0 for 
[ 6 [ = 6.. The function "/2(6) is pure imaginary when [ 0 [ < k2, real when k2 < [ 6 1 < 6., and complex when 1 6 [ 
>6.;  Ira"/2(6) = 0 for [ 6 [ = 6.. The roots of the inner radical of"/m(6) lie on the imaginary and real axes (two lie 
on the imaginary axis and two, 6 = ~6., lie on the real axis symmetrically about the origin). 

If T = 4 1 + ~l) and - /< 2(ct[3) lrz, the functions -/m(6) are complex in the whole interval [ 6 [ > k2 and +-6. = +-k2. 
I f " /=  ct(1 + [~), "/> 2(ct[3)trz the functions Tin(6) are real in the whole interval 1 6 [ > k2 and +-6. = +-k2. 
If T <ct(1 + [i) and - /<  2(ct[~) l/z, then 71(6) is pure imaginary when [ 6 [ < kl, real when kl < [ 6 ] < k2, pure 

imaginary when k2 < [ 6 [ ~< 6., and complex when [ 6 [ > 6., Re -/1(6) = 0 for 6 = 6.. The function -/2(6) is pure 
imaginary when [ 6 1 <~ 6. and complex when [ 6 1 > 6., Re -/2(6) = 0 for [ 6 [ = 6.. 

Two roots of the inner radical are real, 6 = ---6., and two are pure imaginary. It can be shown that k2 < 6. < 
k2[~(1 + ~)/T]I~ if ~ < a(1  + I~). 
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On the basis of the above, one can claim that Yl(q) + T2(a) takes a real value for ix(1 + I~) ~< T < 1 + ctl~, 
1/2 I C;l ~> k2 and -2(otl~) < V < o~(l + ~), I crl ~> o.. 

Setting 0 2 = 12), 2 (iz = pro2) in (2.5), after elementary calculations we obtain 

f(y) = 12 {12 (y2 _ p~ )(y2 _ c.~-J )~ (YI (Y) + V2 (Y)) + k*R(y)} 

' _ c~ -~ )½ R(y) m{[clC4_(c2_c3)2]y2_c4}_(y2 _c~1)112_(ClC4)1//2(y2 , p ~ 2  = ( p c 2 ) - I  

Note that in the case of a transversely isotropic medium R(y) has two real rootsy = +--YR andyR > c~ ~/2 [8]. 
We consider the following cases. 
1. or(1 + [~) ~< ¥ < 1 + et~. In this case the following three combinations can occur 

-,/_ 
c;~<p; <ye; l,; <c;~<ye; c3 <ye<p7 (2.6) 

Let us consider the first case 

f(+p~ ) = p~eo3),,*R(+l,~ ' ) < 0 

.f t±Ye ) = P ~ms O'~e - P~ )tYPe - c~ ~ )½ ['Y t ( +-)'~ ) + ~12 ( +YR )] > 0 

The function f0,) has two real roots, which lie in the intervals (+_p~, +-YR). 
Second case. Here 

f(+c~ ) = _p~¢~3~* (ClC 4 )~ (c.~l _ c~-I )~ < 0 
3 5 * 9 - I 

f (  +YR ) = P ~ "  (.~,',~ - PI )()'~ - c31 ) ~  [T I  ( + ) 'R )  + "~ 2 ( + ) ' R ) ]  < 0 

"4- -1/2 These roots lie in the intervals ( -c3  , +--YR). 
Third case. We haw.' 

f (+YR) = P "~¢°5 (y2 _ p~2 )(y2 _ c.~l )~ [T, (+YR) + Y 2 (+YR)] < 0 

f (+p~)  = p~to3R(+p~ )~* > 0 

We denote these roots by ±y.~. In the third case +_y~ ~ ( +_yR, +--P~). 
2. --2(0~ ~)V2 < Y < O.(1 + 1~). Then we have 

(a) y,  < YR < P~, 

(b) y.  < p;  < yR. 

(c) p; <y ,  <yR, 

(d), p;' < ye  < y . ,  

+ . * 
Ye ¢ (+Ye, + Ih ) 

• + * 
+YR E ( - P l ,  -+YR) 

+--YR E(+y,, +--YR) 

(e) yR < p~ < y , ,  ( 0  yR < y .  < p~ 

(2.7) 

In eases (d)- (0  f(y ) has no roots, y. being the branching points of the inner radical. 
It follows that in cases 1 and 2 the roots ofjTy) lie in the intervals (__.p~, -+Ya) whenyR >y . ,  X* < py2R(plc4h)-l. 

When ~.* = py2R(pc4h)-I oryR = y., the roots off(y) are identical with -+YR. IfyR > y., X* > py2R(plc4h)-l, the 
roots belong to the intervals (---YR, PD. IfyR <y . ,  thenj~y) has no roots. 

Now we shall derive an asymptotic formula for the tangential contact stress 
for a(1 + ~) < ~, < I + ~x~ 

-Imx(x, t )= TRY2+ T(al )Ell(a~) ~ FI(a2)ReE2 I-o([ x] -~)  
2 n ~  I x I'Y-' 2 ~ 1  x]Y-" 

(2.8) 

for T= ¢z(1 + IB) 

_ lmx (x , t )=TR~ .  ~ T(a~)Ett(a~) 3F(~)FI ,E ÷o([ x[ - ~ )  
2 ~ l x l  ~ ~ 2.7,~1xl ~ 

for ct(1 + J~) < T < 1 + otJ] 
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- Imx(x , t )=TR~+T(dl )EI l (d~)  H(d2)ReE2 + o ( I x l  - ~ )  
2~½1 r l ~  2 ~ 1  .~- IY2 

Here  

~ = c o s ( t 0 t - o ~ l x l ) ,  E =cos(o~t-k21xi - x l8)  

Eil(~.)=cos[tot-kl[ x l -  ~/  4 + arctg(T**(~.)/ T,(X))] 

T(~.) = [T 2 ().) + T2, (X)] ~ 

TR = ta? ~ ( o D R m ~ )  

T, (~.) = (k? - k 2 ) k ? ~ (~ . )~_  ( ~.)~+2 (~.) 

T** (~.) = 2(2k2~) t'/2 k14 ~.* ~. 2 (k? - k 2 )LI~( ~. )ff~+2 (~.) 

e(~.)= L~. 2 -2c2k 2, L= (c 2-6"3) 2 - c l c  4 

f~l (O~) = d / ( d o ) [ f ( o ) ] a = o ~  

fl:l: (~) = 2( k2 - k2 )2 (k 2 _ k 2 )k21 ~ + ~.* 2 ~,2kl4 L 

T** (~,) / T. (~,) = 2(2k213)~ ~,* ~,(k 2 - k 2 )L~_  -I (~,) 

2(k 2 - k 2 ) ~  

1-1(~.) = ~"2~'(c3c4 )1/2 c3k2 

(k 2 -k2)b? 
rl,(X) = 

3 ~.'2c 3 (c lc 4 )~  k~(k  2 - k 2 )~ 

The first term in each of the series (2.8) represents  the stress caused by surface waves propagat ing with velocity 
~ = ta/o~. The second term is due to quasilongitudinal waves, while the third one comes from quasitransverse 
waves in a region far away from the source. 

Let  us compare the velocities of propagation of surface stress waves in an anisotropic half-plane with a thin coating 
and in an anisotropic half-plane without a coating. We have a non-uniform haft-plane in the former case and a 
uniform one in the latter. 

If a horizontal  concentrated harmonic force is appl ied at the boundary of the uniform anisotropic half-plane, 
the velocity of propagat ion of surface waves, which depends only on the elastic constants of the material  of the 
anisotropic half-plane, is given by ~R = 03/0~. 

Now let the same force be applied at  the boundary of the non-uniform half-plane. Considering separately the 
oscillations of the coating within the framework of the assumptions adopted above, we find that  the waves in the 
coating propagate  with ve logi~  (El/p1) la. 

If  oR > o .  and Ellpl > toz/~, the roots off(y)  lie in the intervals (__.p~, -ok/ t0) .  
On the other  hand, since the velocity of propagat ion of surface waves in the non-uniform half-plane equals 

~ --- t0/o~, where o~/ta is a root  off(y),  it follows that  the velocity of propagat ion of surface waves is greater  than 
that  of free waves in the uniform half-plane. 

Now let ok > o.  and E1/pl < t02/O'~R. Then the roots of the function belong to the intervals (±Ok~tO, ±p$). 
This means that  the velocities of propagat ion of surface waves are less than those of similar waves in the uniform 
half-plane. 

When  ok = o .  or El~p1 = t02/o~s, the roots  off(y)  are the same as those of R(y). As  a result, x(o) has no poles 
on the real axis. No surface waves arise in these cases. Finally, when on < o .  the funct ionf(y)  has no real roots, 
so that  no surface waves arise either. 

Note  that  there is a phase shift between the quasilongitudinal waves. From (2.8) it follows that  the phase shift 
is negative when kl < k and f/SI(X) > 0 and positive when kl < k, f~_-l(x) < 0 and k 1 > k, ~),~1(~,) > 0. This means 
that  in the first case the quasilongitudinal waves lag behind those in the anisotropic half-plane without a coating, 
while they lead in the other case. As can be seen from (2.8), the stress due to quasilongitudinal waves can be neglected 
for large x when kl = k. There  are no phase shifts for quasitransverse waves. This is consistent with the adopted 
model  of the coating. 
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The  following cunclusions can be drawn f rom the above results. 
1. I f  the lacuna does not  intersect  t h e x  axis, i.e. a(1  + 13) < y < 1 + a13, surface waves will arise in 

the non-un i fo rm anisotropic  half-plane.  Note  that  a study was carr ied out  previously [1] for  the par t  
o f  the domain  (a(lL + 13), 1 + a13) [6] in which surface waves also arise. 

2. W h e n  a lacuna occurs on the axis, i.e. -2(a13) 1/2 < Y < a(1 + a13) and OR > O, or  ~R < ¢0/6,, surface 
waves  arise again [n the non-un i fo rm anisotropic  half-plane.  

Surface waves  do not  arise when  UR ~> 0~/O,. But  then the adop ted  mode l  o f  the coat ing is unsuitable,  
so that  the absence o f  surface waves in the case in question may  possibly be  explained by the unsuitability 
o f  the mode l  of  the coating. 

Note  also tha t  the quasi t ransverse  waves decay as I x ]-7/4 when  the lacunae b e c o m e  points  on  the x 
axis, i.e. y = a(1  + 13). 

I wish to thank  E. Kh. Gr igoryan  for  suggesting the p rob lem and for  helpful  advice. 
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