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THE PROPAGATION OF OSCILLATIONS FROM
A POINT SOURCE IN AN ANISOTROPIC PLANE AND
HALF-PLANE WITH A THIN COATINGY

K. Sh. MKRTCHYAN
Leninakan
(Received 23 April 1991)
Two dynamical problems of the propagation of oscillations in an anisotropic medium generated by a point harmonic force are
considered. In the first problem steady harmonic oscillations in an anisotropic plane are investigated. The solution can be reduced
to solving a system of second-order elliptic equations for the steady part of the displacements. As the second problem, within
the framework of the basic physical model [1], the dynamical contact problem for an anisotropic half-plane reinforced along its
boundary by an infinite elastic coating in the form of a thin cover is considered. The generating point force is harmonic. The
solution of each of the two problems is constructed by the method of Fourier transforms. Using Lighthill’s method [2] and the

method of stationary phase [3}, asymptotic formulae are obtained for the strains and stresses, in which surface, quasilongitudinal
and quasitransverse waves can be distinguished explicitly. © 1996 Elsevier Science Ltd. All rights reserved.

Contact problems of the perturbation of an electroelastic half-plane by a single electrode were considered
previously in [4, 5], as was the dynamical contact problem for an isotropic elastic half-plane reinforced
by an infinite or semi-infinite thin cover [1].

1. THE PROPAGATION OF OSCILLATIONS FROM A POINT
SOURCE IN AN ANISOTROPIC PLANE

Suppose that a point harmonic force 5(x)3(z)e'™ directed along the z axis acts at the origin x = 0,
z = 0 of a system of coordinates in an unbounded elastic anisotropic medium. We shall consider solutions
of the form

M (x,z,)=u,(x,2)e7”, ©>0

Here and henceforth n = 1, 3. The functions u,(x, z) must satisfy the system of equations

c +ey =X +c 2“' +p0iy, =0
3 =
} ax2 2 axaz R azz p 1

1.1
2 2, 3%, , (L1)
+cy E)zi +p0 1y +8(x)8(z)=0

It is assumed that the coefficients c;, . . . , ¢4 are expressed in terms of the elasticity constants of
the medium and satisf{y the conditions of strong hyperbolicity and positive definiteness of elastic energy

(6]

—2(aB)}é <y<l+of (1.2)
a=2, B=22 y=i+of- £
Cl C4 (C|C4)
We consider the case
O<a<l, 0<B<l (1.3)
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By the Fourier transform method with respect to x, we shall construct a solution of (1.1) representing
an outgoing wave as x? + 22 — «o. We obtain the following expressions for the displacements

S'g"z i 3 (- )" iccw , (6)do

—oo m=1

u(x,z)=—"—=

(1.4)

o0 2
u3(x, Z) - 2_ I Z (—l)m(clcz _clkll - c}Ym )um (G)’Yl_ldc
—oo m=|

where

U (0) =[2c3¢4(Y, — Y2)lexpl-i(ox - iy, (o)l 21))

_pym+ " /4
Ym(c)=[2(o>+( ™ (U (o) J
20

Z(0)=c’y-kJoa(1+B), U(c)=Z*(0)-40B(c? - k? )02 - k2),

Kkt =pw?/lc, kf=pw’/c,

Here and henceforth m = 1, 2.
We will begin by studying the functions y,,(c). We note that +k,,,, are branching points of order
two of the inner radical in the expressions for y,,(c) and
K,y = 20k, My A M, +(-1)" THAV
M, =vy*-40B, M,=y(1+B)-2B(1+)
M, =(1-B)?, T=M?}-MM,=4dacici*[(c+PB)-7]
If Z(+k,) < 0 and Z(xk;) > 0, then *k;, =k, will correspondingly be the branching points of order
two of the outer radical in the expressions for ¥,,(c).
The following expansions are therefore valid
ym(0')=a,‘f,(o+k,,, )yz AR (G_I‘m )/- —l(km _6)/
(-G - km )/ = —’(0 + km )/ am = [( l)"‘an:B(kZ. - kf )/ Z(km )]yz

Z(k,)= k,,,y kZa(l+P) a, =-ia,

It follows from (1.2) and (1.3) that these expansions hold only when 7 lies in the range (a(1 + B),

1 + of), where o1 + P) can be determined from the equation Z(k;) = 0. If y = o(1 + B), then
+k, = +k, will be fourth-order branching points for y,,(c) and +k; will still be second-order branching
points for ¥;,(c). Thus

Y (0)=bE(G k) +..., (O-k)f = G , —G)S

(-G -k = e ™4 ky 404, by = ey

b =™, bl = oM 4kBkT — kDS
Since Z(k;) = 0 for y= a(1 + PB), it follows that Z(k;) < 0 and Z(k;) < 0 when —2(af)*? < v <

o1 + B). This means that y,(c) has no branching points and +k; = +k, will be second-order branching
points for y¥;(c). Consequently

Y(0)=di(0tk, )i + ..., d} =—id]
dp = [2k, BT ~k3) 1 (Z(ky DV*
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If the branching points of v,(c) are known for various values of vy, asymptotic expressions for
| x| = e can be obtained by Lighthill’s method. We have
whena(l +B) <y<1+of

A| (a2_)E2 A3E2 +ia| E| (' X I-%)

u‘3)(x,0,t)= + 0
| x| 20| k1%

for —2(oB)% <y<a( + )

3 (x0 _1A) A iB,(dy )E, -%
wx0.0) n(|xly_2 PR Ty At G (15)

when y=o(1 + B)

WOimono JE=RETODF L BE@DE L |
T oknbr + b)) x ) 2’| x|

Here

E, =expl—i(wt—k,| x| -m/4)]
F=expl-i(af—ky) x| -3n/4), uV(x,0.n=0
X[C:J.z —2k|cl (C|C4)%]

1(A)= 4k,c,c3(k22 - kl2 )
Alcic )y2
(A)= 4l
AR 4c;k,

Ay = lim 2(0—k,)% < [(o kL (o- kz)yzrl_;(o,())]
Gk do do

It is also of interest to obtain asymptotic formulae when z # 0. In this case it can be assumed without
loss of generality thatx > 0 andz > 0.
Let us investigate the critical points of the functions

An(a,)=0, cos®—iy, (a,)sind

i.e. the zeros of the functions k(f,), i=12,...), where k(,‘;), are ith order derivatives of the function
Am(ct,), which must satisfy the equation

tge = ('dYnx /(dam ))_I » Oy =0, + itm (1'6)

: de — m am[YYil - B(Za:r‘l?) — kll - k22 )l
[ —==(-1) ]
da,, iU, )%y,

for every 6.

Hence it follows that the equations under consideration will have solutions only if idy,/(do,,) are
real.

We consider the following cases depending on the values of y.

1. y» <y <1+ of. In this case the wave fronts have four lacunae, which lie between the coordinate
axes (x, z) [7]. The quantity v, is a root of the equation
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[3(1-B)P - (1+BYy - 2B(1+ 00)][(1 - B)P+ Q1% +2[(1 + B)P - (1-B)YN2(1-B)PY =0
P=(v’-40B)%, 0=2B(1-0)-y(1-B)

It can be shown that X7(0;) = 0 when o, = ah and &, = o, where oy and & can be determined
from the condition 5(c;) = 0. To each value of 8 from the interval (6., 8.+) there correspond three
zeros oy (k = 1, 2, 3) of l(%)(ovz), which can be determined from (1.6). The end-points of the interval
are given by arctg (idyy/da,)™ with o, = oty for 6. and with o = oy for B.+. To each of the remaining
values of 6 in the interval (0, n/2) there corresponds one zero of kg)(am).

2. y = ¥-. The lacunae become a point. Consequently, o, = a3 = 05y = 0t will be a zero of AP(ar,).

It can be shown that l‘?(a&’) # 0. The quantity oz can be determined from the condition y3(a,). The

critical points of Y,,(ct,) for the remaining values of A from the interval (~2(aB)?, y») can be studied
in a similar way.
If the critical points of the functions 7,,(a,,) are known, asymptotic expressions for u®™(r, 6, ) can

be obtained by the method of stationary phase using (1.4) and polar coordinates.
In case 1 we find

for0 <9 <0.and 0. < 0 < 72
4™ (r,0,1) = B (040) + B 0y ) + 0(r )

for 6 = 6.

4 (r,0,0) = B{"(01,9) + AP (th ) Fiy (o)1 | }é}’(a'zo)l]‘% +o(r ) 1.7)
for 6. < 6 < B..

3
WM (r,0,0=B"(ap)+ 3 BO (@) +o(r %)
k=1

and 6 = 6“
U™ (r.0,8)= BN (0,0) + AL (0 ) Fy ()| A2 (a4 + 0

In case 2 the lacunae becomes a point and
for0 <9#£6. <n/2

u™(r.0,1) = B,‘,”(a,o)+ B,(,z)(a20)+ o(r'%)

and for 6 = 0.

u(r.8.0)= B, (o) + 4,2 (@55) Fy (0[P AP (@s)T 4 + o7
Here

F,y (0,,0) = exp[~i(a + X, (0,0 )7 + Y wsign A2 (at,,.0)))

Fy(0t) = T(1+ 4)3%25 expl—i(ar + Ao (cth)r)]

Fy(05) = T(1+ Y)2%3% expl—itae + Ay (a5)r + % msign A5 (o))

A, (a,)=a, cosd-iy,(a,)sind

a, =0, +iT,

A (A) = (=)™ ic, AR5 (L)
AT (M) = ()" [0 - ek - c3¥i (M YRR (L)

F 0 =202m)" 2 eye [y (M) - y3 ()
B™(A) = A M, W r A2 (A%
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The series obtained above enables us to determine the amplitudes of quasilongitudinal and quasi-
transverse waves in a region far from the source. The first term in each of the series (1.5) and (1.7)
represents quasilongitudinal waves, the second term representing quasitransverse ones. Note that the
quasitransverse waves corresponding to cusp points on the wave front decay as r'°, i.e. slower than
the waves related to ordinary points. When the lacunae become points, the quasitransverse waves decay
asr %,

2. THE PROPAGATION OF OSCILLATIONS FROM A POINT SOURCE
IN AN ANISOTROPIC HALF-PLANE WITH A THIN COATING

We shall solve an auxiliary problem of the steady oscillations of an anisotropic half-plane.

Suppose that a horizontal unit harmonic force 8(x)e™"* with frequency o concentrated at the origin
of the system of coordinates acts on the boundary of an anisotropic half-plate.

The steady parts of the displacements satisfy the homogeneous system of equations (1.1) with boundary
conditions

(02 —C3)

du du 3 0
Trregiao o 3.2

% )=—5(x) (z=0) 2.1)

By the Fourier transform method with respect to x, we shall construct a solution of the homogeneous
equations (1.1) with boundary conditions (2.1), representing an outgoing wave as x* + 2> — o, For the
displacements we obtain

e—iuw oo
M (x,0,0)=— [ w,(ok(0)do
2n

wy(0) = ca(0° - k7 )yZ(\(I -7;) k(G)=e"" / R(G) 2.2)
Wy (6) = i0{[c;c, (62 — kD)2 = (c; — ;)6 —k2)*)
R(0) = {02[cicq — () — €3)* ] - sk HO” — k} Y2 _ k3 [ccq (62 -kf)]y2

Suppose the anisctropic half-plane is reinforced by an elastic coating taking the form of a fairly thin
cover of constant thickness & (see Fig. 1).

The problem consists of finding the distribution of contact stresses along the interface between the
coating and the half-plane, given that a horizontal harmonic force pd(x)sin (ax) acts on the upper face
of the coating. To simplify the computations, we henceforth take a force of the form p&(x)e™*. The
imaginary part of the solution taken with the opposite sign will obviously be the desired solution.

The following assumptions are made regarding the coating.

The thickness of the coating is many times less than the wavelength of the wave propagating in it.
As in [1], we shall assume that because £ is small, the flexural stiffness of the coating is negligibly small,
so that the normal pressure of the coating on the half-plane can be neglected. In other words, we shall
assume-that only the shear contact stress acts under the coating, i.c. the system is in a state of uniaxial
stress.

<n

pinwt
Fig. 1.
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In this case the steady oscillations of the coating can be described by the equation [1]
d’u, 1 dx® + plu, = (Eh) {1, (x) - pd(x)] 23)

pi=w?Ic?, c=E"/p"

where c is the velocity of propagation of waves in the coating, 1.(x) is the steady part of the unknown
shear contact stresses, E; and p, being, respectively, the modulus of elasticity and the density of the
material of the coating.

On the other hand, the amplitude u;(x) of horizontal displacements of the points on the boundary
of the anisotropic half-plane as a function of the stress amplitudes t.(x) applied to the boundary of the
anisotropic half-plane is, by (2.2) and the superposition principle, given by the formula

u(x)= T K( x—s|)‘t.(s)ds (—o0 < x < o0)

]
K(x)= Py L w, (0 (0)do

Note that the condition
u(x)=u(x) (-o0<x<oo)

must be satisfied along the interface between the coating and the half-plane. Combined with (2.3), this
condition reduces the problem of determining the contact stress amplitude to solving the integro-
differential equation

(d‘:z + pj ) °f K(l x = sDht.(s)ds = N1.(x) = X' pd(x), A" =(c Esh)™! (24)

The solution of the contact problem of steady oscillations of an anisotropic elastic half-plane reinforced
along its boundary by an infinite thin elastic coating can therefore be reduced to the integro-differential
equation (2.4).

Applying the Fourier transform to both sides of (2.4) and using a well-known property of convolution, we obtain
7.(0) = A*pRO)If(0)]"
Here
£(6)=(62 - pi)0? - k3)(y, +72)+ X R(O) (2.5)

Let us investigate the roots of f{c) for various values of v.

At any point ¢ on the real axis the functions 7y,,(c) can take real, pure imaginary, or complex values depending
onYy.

Ify<2 ((X.B)m and y > a(l + B) , then y,(0) is pure imaginary when | ¢ | < k; and real when | 6 | > k,. The
function y,(0) is pure imaginary when | 6| < k; and real when | 6| > k, i.e. ¥,,(0) take only real or pure imaginary
values.

If y < 2 (op)'* and ¥ > a(1 + PB), then 7,(c) is pure imaginary when | 6 | < k;, real when k; < | 6| < G-, and
complex when | 6| > o». From the continuity of the real part of y,(c) for | 6 | = o it follows that Im y;(c) = 0 for
| 6| = o.. The function Y,(6) is pure imaginary when | 6 | < kj, real when k; < | 6| < o+, and complex when | 6 |
>0+; Im y,(6) = 0 for | 6| = o.. The roots of the inner radical of Y=(0) lie on the imaginary and real axes (two lie
on the imaginary axis and two, g= 1., lie on the real axis symmetrically about the origin).

Ify=0(1 +f)andy< 2((1[/32) , the functions v,,(c) are complex in the whole interval | 6| > k; and 6. = *k,.

Ify= ol + B), vy > 2(cB)" the functions y,,,(c) are real in the whole interval | 6| > k; and *6. = *k;.

If Y <ol + B) and y < 2(aB)'?, then y,(c) is pure imaginary when | ¢ | < k;, real when k; < | 6| < k, pure
lmagmary when k; < | 6| < 6., and complex when | 6 | > G», Re 11(0) = 0 for 6 = o.. The function y;(c) is pure
imaginary when | 6 | < o» and complex when | 6| > o», Re 72(6) Oforjo|=o..

Two roots of the inner radical are real, o = *¢., and two are pure imaginary. It can be shown that k; < 6. <

kol + B)/'Y] ify<a(l+B).
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On the basis of the above, one can claim that y,(c) + 1,(0) takes a real value for a(1 + B) <y < 1 + af,
|o| = kyand -2(0B)? <y < o1 + B),| 6| = On.
Setting o? = /3* (I* = pw?) in (2.5), after elementary calculations we obtain

FONV=P U2 - O =@ )+ 120N+ A RO))
] !
R(y) ={lcjeq —(cz —c3)2 1y? —cg}- (2 2 Z(epey )A(y2 -t )/2' Pt =(pc?)!
Note that in the case of a transversely isotropic medium R(y) has two real rootsy = %y and yg > ¢32 [8].
We consider the following cases.

1. a(1 + B) <y <1+ of. In this case the following three combinations can occur

- * * -U -1
03%<m <YR: M <63K<.vn: 63A<.vn<m* (2.6)

Let us consider the first case
FEpH)=p 0 A R(Ep) <0
vy =p 0% (vk - p vk -3 VALY Ry + 12 (2y)1>0
The function f{(y) has two real roots, which lie in the intervals (+p], +yg).

Second case. Here
f(ic;y: y=-pP0 W (e e — VA <0
ftevg)=p%0 (F - P - i VAT (£rg) + Y2 (k)] < 0
These roots lie in the intervals (£c32, yp).
Third case. We have
FCeyp) =0 5% - R ~ 5 ALY, () + 72 (230)1<0

fEpy )=p%m-‘R(ip.‘)}: >0

We denote these roots by xyx. In the third case xyg e (£yg, £p}).
2. =2(a. B)? < y < a(1 + B). Then we have

(@) yo<yr<p,» type(typ.tp))
(b) yo<pi <yp, type(Epi.tyg) 27

() pi<ye<yg. tyRe(ty. tyg)
@) py <yr<ye: (€) ¥r <Pp < Ve ) YR<Ys+<P

In cases (d)—(f) f(y) has no roots, y. being the branching points of the inner radical.

It follows that in cases 1 and 2 the roots of f{y) lic in the intervals (£p}, +yg) when yg > y., A* < py(picsh) ™.
When A* = py’R(pcsh) L or yg = y-, the roots of f(y) are identical with xyg. If yg > ye, A* > pY’R(pich)™, the
roots belong to the intervals (£yg, pi). If yr < y-, then f{(y) has no roots.

Now we shall derive an asymptotic formula for the tangential contact stress

fora(l+B)<y<1+af

T(al_)E||(a|')+ M(a; )Re E,

~Imt(x,1)=TeQ+ +o(| xl_%) 2.8)
wh % 2nh) k)

fory=o(1 + B)

T(a] )E; (a7 )  3TCLILE Y%
—Imt(x,0)=TpeQ + + +o(l xI"7%
R whl x|t 2Pal B

foro(l+B)<y<1+aff
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TV E(df) Tid; ReE, %
—Imt(x. ) = TeQ+ - +o(| x1772)
R TN AR AN

Here

Q=cos(wt -0kl x|), E=cos(wr—kl x| -n/8)
Ej (M) = cos{t —k;| x| -n/4+arctg(T.. (M) T.(M)]
TO) =(T2 (M) + T2 Y

T =Q' (GR)R(GR)

T.(A) = (kf - k2 RFAe(MQ_ (MQZ (L)

Tou (M) = 22k, BV KN AL (K2 - k) Le(MIQT (M)
eM) =LA -2k, L=(cy-cy)’ —cieq
Q,(o})=d/(do)[f(o)]0=o.

Q. (M) =2(k{ = k)2 (k2 — k@ kB2 A 22k L
Toe (M) T(M) = 202kB) 2 N AGKE — k2) LR (M)

2k2 — k3 pht

H(A) - —_— e
x’2)~(C3C4 )yz C3k2

k2 — k3 )bjt

n*(}\v) =
3}\'263(c164 )% ké% (k22 - klz )%

The first term in each of the series (2.8) represents the stress caused by surface waves propagating with velocity
v} = /0% The second term is due to quasilongitudinal waves, while the third one comes from quasitransverse
waves in a region far away from the source.

Let us compare the velocities of propagation of surface stress waves in an anisotropic half-plane with a thin coating
and in an anisotropic half-plane without a coating. We have a non-uniform half-plane in the former case and a
uniform one in the latter.

If a horizontal concentrated harmonic force is applied at the boundary of the uniform anisotropic half-plane,
the velocity of propagation of surface waves, which depends only on the elastic constants of the material of the
anisotropic half-plane, is given by vg = w/c}.

Now let the same force be applied at the boundary of the non-uniform half-plane. Considering separately the
oscillations of the coating within the framework of the assumptions adopted above, we find that the waves in the
coating propagate with veloc (Erlp)™™.

If og > o+ and E/p; > w?/c%, the roots of f() lie in the intervals (+pf, toR/u))

On the other hand, since the velocity of propagation of surface waves in the non-uniform half-plane equals
v} = W/ck, where o}/o is a root of f(y), it follows that the velocity of propagation of surface waves is greater than
that of free waves in the uniform half-plane.

Now let 6g > 0. and Ey/p; < ®%/c%. Then the roots of the function belong to the intervals (og/@, +p}).
This means that the velocities of propagation of surface waves are less than those of similar waves in the uniform
half-plane.

When og = o or Ey/p; = %/c}, the roots of f(y) are the same as those of R(y). As a result, ©(c) has no poles
on the real axis. No surface waves arise in these cases. Finally, when oz < o+ the function f{(y) has no real roots,
so that no surface waves arise either.

Note that there is a phase shlft between the quasilongitudinal waves. From (2.8) it follows that the phase shift
is negative when k; < k and Q-'(A) > 0 and positive when k; < k, @Q7'(A) < 0 and k; > k, Q'(A) > 0. This means
that in the first case the quasilongitudinal waves lag behind those in the anisotropic half-plane without a coating,
while they lead in the other case. As can be seen from (2.8), the stress due to quasilongitudinal waves can be neglected
for large x when k; = k. There are no phase shifts for quasitransverse waves. This is consistent with the adopted
model of the coating.
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The following conclusions can be drawn from the above results.

1. If the lacuna does not intersect the x axis, i.e. a(l + B) < vy < 1 + of, surface waves will arise in
the non-uniform anisotropic half-plane. Note that a study was carried out previously [1] for the part
of the domain (a1 + B), 1 + af) [6] in which surface waves also arise.

2. When a lacuna occurs on the axis, i.e. —2(aB)"” < y < o1 + o) and o > 6. or Vg < @/G-, surface
waves arise again in the non-uniform anisotropic half-plane.

Surface waves do not arise when Vg = w/c». But then the adopted model of the coating is unsuitable,
so that the absence of surface waves in the case in question may possibly be explained by the unsuitability
of the model of the coating.

Note also that the quasitransverse waves decay as | x |
axis, i.e. y=a(1 + B).

I wish to thank E. Kh. Grigoryan for suggesting the problem and for helpful advice.

"4 when the lacunae become points on the x
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